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1. PRELIMINARY CONCEPTS

I I. Introduction

The subject matter of this work to minimax parameter estimation.

In the present chapter we will introduce some basic concepts and definitions

from the theory of parameter estimation and through these arrive at the

results and techniques which we will use to search for minimax solutions to

parameter estimation problems.

1.2. Parameter Estimation Theory

In general a parameter estimation problem can be stated as follows:

Let Z be a random variable having a probability distribution function

F9 (Z). The subscript in the distribution function indicates that it depends

on an unknown parameter 0. In keeping with the standard literature on the

-- subject a canonical personage usually identified as the statistician or

decision maker is introduced to facilitate the exposition of the problem.

The statistician is interested in estimating the unknown parameter e from a

single observation of the random variable Z. More specifically a function

j 6, called a decision rule or an estimator, is to be designed so that the

random variable (Z) provides the statistician with a "good guess" or

I• &stimate of thc vaiue of the unknown parameter 0. At this point we must

j address the follewing problem: How shall we evaluate the goodness of a

given estimate? Thiv 1i the question of choosing a criterion for estimation.

j In this work we shall consider the loss function approach to parameter

estimation and apply the nLdi•ax criterion. This approach and criterion areI
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Definition 3: Two decision rules are equivalent if they have the same

conditional risk function.

Definition 4: A decision rule 6 is said to be a Bayes rule if for every

other rule y

Etrr8,e] -E[r[rY,G]l (1.2.4)

wf here the average is taken over a prior distribution X(9) for 0, that is, 6

minimizes the average risk.

Definition 5: c" is said to be a minimax decision rule if for all other

rules 5

sup r_8*,J <_ sup r[8,0]. (1.2.5)
eEQ0 eED

Th.at is 6" infimizes sup r[8,0].
e EC2

t

4 Minimax estimation theory is closely related to the theory of two-

4 person zero-sum games. The elements of a two-person zero-sum game are:

j (i) The two players, usually identified as the Statistician and

&, rure.

(ii) The Kernel that represents the pay-offs of the game.

Tte Kernel is a function of two variables each of which is controlled by one

of the players. When a minimax estimation problem is considered as a game,

•iI the kernel of the game is identified with the average risk

I
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!. ,[~~ r[6,e] dX(e).(1.)

The two variables are the decision rule 8 controlled by the Statistician and

the distribution X (9) controlled by Nature.

The rules of the game are such that the Statistician looks for a

decision rule 6 that minimizes

SUp J r[6,eO dX(e) (1.3.2)

while Nature tries to find a distribution X(e) that maximizes

inf f r[6,9] dX(e). (1.3.3)

Such a distribution is called a least favorable prior distribution.

It can be seen that

Sup j r[6,0] dX(G) = Sup r[8,O], (1.3.4)

X nE0

so that if the Statistician succeeds in the game he has found a minimax

solution for the estimation problem.

The fundamental theorem in game theory, the minimax theorem, states

that "r certain conditions

inf supf r[6,e] dX(9) = Sup inf f r[8,G] dX(e). (1.3.5)
6 Xk X ) 6

Now if the minimax theorem holds and a least favorable prior distribution

exists, then any minimax rule is Bayes with respect to this prior

distribution. See [1] for an extended discussion of Bayesian decision theory

5 and the minimax criterion.
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..4. Preliminary Lemmas and Results

L'mma 1: A Bayes rule is admissible if it is unique up to equivalence.

Proof: (see [11, p. 60).

j Lemm a_2: (Wald). Let 6? be a Bayes rule with respect to r[6,e] and X(O).

Ass•.me that max r[6x,8] = r exists. Define

I TX (BED rr6~,eJ r) (1.4.1)

Assum=e that XCTXI 1. We now have:

is minimaxs

(Ii) k is a least favorable prior distribution.

Proof: (i) (by contradiction). Assume there exists a decision rule 6, and

j a number c > 0 such that

max (r[8,0] +c) < max r[6~,,O (1.4.2)i e En 2E

t then

JLfr[6,9] +c]dX (8) < maxfr[6,8] +c4
Ae 8EC (1.4,3)

< max r[6X,e]
8 ED

I _-od mad r[6ke] F = j r[68,8] dX(O), since X assigns probability 1 to

-. Tberfore

j r[6,0] dX(O) + c < j r[6S,e]d%. (1.4.4)
1 0

I-



This last inequality contradicts the assumption that 6X is a Bayes rule and

we therefore conclude that 6X is minimax.

(ii) (By contradiction)

Assume there exists another prior probability measure p and a number C > 0

such that

infi r[6,9] dX(e)+c < inf r[8,0] dp.(8) (1.4.5)

but

S r[8x,G] di(e) > inf 5 r[8,0] dp.(q)

"> inf 5 r[8,e9 dX(e) +c = +ca (1.4.6)

so that

.J r[s,,e] dl(e)>r F+c > F (1.4.7)

-which is a contradiction; therefore X is a least favorable prior

distribution.
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2. MINIMAX PARAMETER ESTIMATION UNDER GENERALIZED QUADRATIC

LOSS WITH A COMPACT PARAMETER SPACE

2.1. Introducticm

The estimation problem we shall consider in this chapter belongs

to a general class of problems that can be described by the following model:

Let z f 0 +v where 0 EO), is some specified parameter space

contained in E , and v is a zero-mean Gaussian random vector with known

positive definite covariance matrix E. We want to find a minimax estimator

I for the unknown parameter 0. It is known [2,3,4] that the existence of

i minimax estimators and the structure of these estimators when they exist is

strongly dependent on the structure of the problem which is affected by the

- J underlying loss function, the parameter space Q and the class of allowed

decision rules.

When the loss function is the Standard Quadratic Loss functi.on,

LoC 6(z),e] = [6(z) - e] 'C[6 (z) - e

an4 the parameter space Q is E , a minimax solution for this problem is

8(z) = z; see [1], p. 170 for further details.

The standard quadratic loss function is generalized by adding to

it a quadratic term in b obtainingT
Ll[6(z),e] = [6 (z) - e'c[8s (z) - ei - '•D.

This loss function forces Nature to compromise between a gain due to

I increasing the Statistician's estimation error and a loss which is equal

to the square of the norm weighted by D. For an unconstrained parameter!
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space, i.e. 02 f En, this problem was solved by Basar and Mintz

[2]

The parameter e can be restricted to reside within a known

#iompact subset of En, for example a hyperellipsoid defined by

= EEn :eG < e , e > 0, G > .

In this case a linear minimax estimator for e under the standard quadratic

losb function was found by Mintz [31. We will be considering here the problem

of finding a linear minimax estimator under a generalized quadratic loss

function and will constrain the parameter e to reside within a known

n
"hyperellipsoid in E

2.2. Problem Statement

Let z = e +v where v is a normal zero-mean random vector with

7 known positive definite covariance matrix E and e is an unknown element of

6 known hyperellipsoidal subset of En denoted by 0 and defined by1 2 2
0 = [ E E e'D2 e < e ; e > 0, D2 > 2O (2.2.1)I2

we wish to determine a minimax estimate 8(z) for 0 with respect to the

I generalized quadratic loss function

JL[8 (z),8] = [6 (z) - e]'c[8 (z) - 0] - e'D e (2.2.2)

I !w.here C > 0 and D > 0, subject to the restriction that 6 be a linear rule.

S1

A2-
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-I .3. Solution

j Define

r (A,v) + F- ) IcE(A+ E)" DI-D (2.3.1)
1 2(23)

wiLh
A > 0 and a > O. (2.3.2)

t Le A* and a denote any solution to the matrix equation:

t r(A*,c*)A* f 0 (2.3.3)

Ss.Ah that

S(A*, 0 (2.3.4)

and

Tr[D2 A* A e . (2.3.5)

Theorem I:

(i) If f(A,ov) is defined by (2.3.1) and (2.3.2) then there exists a

,-variance matrix A* and a scalar 0&* > 0 that satisfy (2.3.3) and (2.3.4).

_ and

LIte r (a) a* 0 and Tr[D2A*1 = e2 < e2

r(b) > 0 and Tr[D2A*] = e2 e 2TrLL~i ~e e.

1" (it) If 6(z) is defined by

I6*(z) = A*(A* +E)flz (2.3.6)

I rhen b*(z) is a linear minimax estimate for e. A proof of part (i) of the

main theorem may be obtained by generalizing the proof that appears in

Appendix I of [3]. The essential modification of that result needed to



sho-4 part (i) is obtained by replacing J(A,A) as defined in Lemma 2 of [31

by

J(AA) = Tr[[(I-A)'C(I-A) -DI]A) + Tr[CAEA']. (2.3.7)

We note at this point that the matrix D of this present paper corresponds
2

to D of reference [3]. Since the modified proof is very similar a complete

discussion will be omitted. We also note that the last two assertions in

Appendix I of [3] do not apply in the present problem due to the difference

in the structure of the loss function.

A proof of part (ii) of Theorem I is obtained using Lemma 2 of

Section 1.4. We need a prior probability distribution for 0 which we define

as folloss:

Assume Tr[D2 A] = e, <_ e, where A > 0 and consider the matrix

2 A D where D is the unique symmetric positive definite square root of

D2 Assume T diagonalizes DoAD2, that is

S TD 2 D 2 T diag(si,...,sn). (2"3.8)

Lt t m denote an n-dimensional random vector with independent components

denoted by mi , i= l,...,n whose distribution is defined by:

PrImi = sr} = k, = ½. (2.3.9)

2k

T'. random vector m takes on 2 values with equal probability, where k is

th.e rank of A. Let p[A] denote the probability measure defined by the

distribution of the random vector y 4= D2 Tm. We note that the support of

the measure A[A] lies entirely in the boundary of'O*, a hyperellipsoidal
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n"" subset of E contained in 0 and defined by

""{Y EE Y,) e 2 <e . (2.3.10)

values of 1_the vecto
This assertion follows from the fact that for each of the 2 equally likely

Svalues of m the vector y = D2Tm lies on the boundary of 0* since

y'Dy =mfT'D2 D2 D2 ½Tm= m'm

n 2 2
-s Tr[D AD 2 Tr[D A = e. < e(2.3.11)

ii i 22(-.1

RFurther, we note that Eryl = 0 and

E~yy'] E[D' T mm' T'D D DTST D4
2 2 2 2

1) T T' Dk A DýT' 2

A . (2.3L.2)

No-, let X denote a prior probability distribution for e such that

& - p[A]. For this prior distribution a Bayes estimate is given by

6 o (z) = A(A+E) 1 Iz. (2.3A3)
0

This follows from the fact that the loss function is quadratic in the

estimation error and therefore within the class of linear rules for a prior

- .distribution with covariance A the rule defined by (2.3.13) minimizes the

average risk. In what follows we will show that X . ]rA and 6* (z)

-defined by (2.3.6) satisfy the conditions stated in Lemma 2 Section 1.4
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and thus establish part (ii) of the main theorem. We need an expression

for the conditional risk function:

r[5% G8] = E[8LfX (z),e•ilei

I I= e'1 1(A + r-)-EF ~ (A +E)1 -D1]

+ Zr[(A +E)- 1 AcA(A +z)-] . (2.3.14)l*
The fact that X* and 6*(z) satisfy Lemma 2 of Section 1.4 is established

in several steps as follows:

Step 1: Observe that for all 6 of the form 6(z) = A(A +E)-z. A > 0 the

I maximum of the conditional risk function

I6=max r[6,e]
eEQ

iiexists since r is continuous in 0 and Q is compact.

Step 2: First consider the case when the solution to (2.3.3) and (2.3.4)

satisfy condition (a) of part (i) of the theorem. In this case we note that

I the conditional risk function can be written as:

r.6*,@ e] g 'r*,O)0 + TrF (A* + A) *CA* (A* +Z) Z], (2.3.15)

then (2.3.4) implies that T,*' deftied by

T,* {=e([ : r[6*,e.01

coincides with the null-space of P(A* ,0), that is

SI
• .= Nit (A*,O)]. (2.3.16)

I
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SI When case (b) of part (i) is in force the conditional risk

T function can be written as

-r[8*,]O = e'(A*,o*)e + ý*e'D e

2

+ Tr[r (A* +F)'lA*CN*(A* +E)):Z]. (2.3.17)

It is obvious that for this caseI
= N[r (A*,e*)] , aQ (2.3.18)

fwhere :0[8 En 0'D29 = e2 ). We next prove that in cases (a) and (b)

Step 3: In both cases considered in step 2, TX* is a subset of the null-

- space of r(A*, Q*). We will now prove that X* assigns probability one to

•-- N[r(A*,e*)]. From (2.3.4) we conclude that e'r(A*,o*)e < 0 but

ErF (A*,'*)9] E(Tr[8rO(A*,a*)8J]

= E(Tr[r (A*,e*)ee ]3

L Tr[F(A*,ce*)A*] (2.3.19)

.1 and (2.3.3) implies that

Tr[r(A*,e*)A*] = 0 . (2.3.20)

So we have

I e'r(A*,e*)e < 0 (2.3.21a)

andIE[9er (A*,c*)e] = 0. (2.3.21b)

!
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7
r This allows us to conclude that X* assigns probability one to the null-

space of P A*,e*). For the case where A* and Ci* satisfy (a) in part (1)

this proves that X*[TX,*] = 1.

For the situation in which case (b) of part (i) is in force, we

note that the discussion following (2.3.10) establishes that X* - p(A*)

assigns probability one to the boundary of Q*, which coincides with Q in

this situation, since Tr[D2A*] e 2 . Hence

X*[r51 1 and X*[N(P(A*,o*))] = 1

and therefore we conclude that T,* as defined by (2.3.18) receives

probability one from X*. We note at this point that we have a prior

probability distribution X*, a Bayes estimator 6*(z) with respect to

X* and r[6,01 and X* assigns probability one to the set T,* where r[6*,e]

attains its maximum value, i.e. F. Making use of Lemma 2 of Section 1.4

-•' conclude that

6* A* (A +Z) -z

I is a linear minimax estimate for 8. This finishes the proof of part (ii)

of the main theorem.

1 2.4. The Scalar Case

The unidimensional version of the problem stated in Section 2.2

will be treated in this section. This scalar case admits an explicit

solution and in obtaining it insight is gained into the structure of the

solution to the vec-Pr case. We will state the problem andi study its
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solution in what follows. Let z = e +v where v N[O0, 2 ] and 0 is an

i e2 2 2
unknown element of C defined by = (8 EE' : 2< e , e > 0). We wish

to oetermine a linear minimax estimator 8(z) with respect to the loss

function:

2 2
L[6(z),O] c(6-e) -dO (2.4.1)

- where c > 0 and d > 0. For this loss function the conditional risk function

- for linear decision rules of the form b = az is given by

2: 2 2 2Ir[8,01 = [c(a-l) 2 -di 2 + ca C-. (2.4.2)

There are two cases to consider depending on the relative magnitudes of c

and d.

Case 1: c-d < 0

7" For this case an appropriate prior distribution for 0 is ).*(e) such that

0 =0 with probability one. The average conditional risk with respect to

• •* iS

2 2

E, *[rr6,oi] = caC(2.4.3)

A Bayes rule is one that minimizes (2.4.3) which turns to be positive

exLept when a =0 so that

j b*(z) = 0 (2.4.4)

is the required Bayes rule. Using the rule defined by (2.4.4) In (2.4.2) thE

I conditional risk function results

I r[6,0] [c- d]) 2  (2.4.5)

I
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"stince c-d < 0 F = 0 occurs when 9 = 0. This is the point that receives

probability one from ?X* and therefore .*(z) 0 is minimax according to

Lemma 2 in Section 1.4.

Case 2: c-d > 0

if 2 2 (i'
•2> > <d - 1), (2.4.6)

then 'A* assigning equal probability to

e = _q + Y - I (2.4.7)

is an appropriate prior distribution. With this prior distribution the

average conditional risk is

S*f•rrk,,' = [c(a-l) 2 d]q2 + ca2a2  (2.4.8)

4 iBy elementary calculus the value of a that minimizes (2.4.8) is

a*: = 2q 2(2.4.9)1 q ,-I-T

-a, !i2- corrcsponding Bayes rule results

S1* = a*z. (2.4.10)

j :qc oi thiS rule in, the conditional risk yields a constant value independent

,,f thi; value of in ?, i.e.,
S•* 2 22

c (a*) .I

I
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This particular situation characterizes 8" as an equalizer rule, i.e. one

that produces a constant conditional risk. In this case TX* is identified

with the whole parameter space C2, the condition of Lemma 2 Section 1.4 that

I k.*[Tx%, be one is thus trivialiy satisfied. We note that all the conditions

of Lemma 2 have been established and we conclude that in this case 2 under

the condition defined in (2.4.6) the decijion rule defined by (2.4.7),

(2.4.9), and (2.4.10) in a minimax rule.

On the other hand, if condition (2.4.6) is not satisfied but

1 2 2f
e < or 1) (2.4.11)Id

we define a prior probability distribution for e by letting ;* assign equal

rrobabilities to e +e, that is:

Pr[e = e) = Pr[e c-e3 = "i (2.4.13)

With this probability distribution the average conditional risk becomes

2 2 2 2E,[r[.•,G] = Lc(a-l) -de + ca c . (2.4.13)

By rcasoning similar to that which lead to (2.4.9), the value of the

multiplier a* defining the Bayes rule for this case is

2
a 2e (2.4.14)2 2e +a 2

1 .)nd the Bayes rule is

•*-a*z .(2.4.15)

The conditional risk function for this Bay,& rule is

I
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"[r[6*,e] = [c(a*-l) 2 -d]e2 + c(a*) 2 a 2. (2.4.16)

"[ The conditional risk is quadratic in e and the coefficient of the quadratic

term is positive. This assertion follows from equation (2.4.14) defining a

and from condition (2.4.11). The maximum value of the conditional risk

occurs then at the extreme points of the parameter interval, i.e.

TX* = [-e,e}. (2.4.17)

Obviously %*LT?,J 1, and according to Lemma 2 of Section 1.4

2e2* e 2 z

e +a

is a linear minimax estimate for 6.

2.5. Remarks

The main theorem in Section 2.3 provides us with a linear minimax

estimate of the unknown parameter e with respect to the generalized quadratic

loss function defined in Section 2.2 where the parameter space is defined to

be a hyperellipsoid -, subset of En. The least favorable Irior distribution

which we associated with this minimax estimate is a discrete probability

distribution that has support on the boundary of a hyperellipsoidal subset of

nE , which we denoted by 72*, contained in the original hyperellipsoid Q. The

minimax estimator, the least favorable prior distribution, and the hyper-

ellipsoid D* are all determined by the solution to the algebraic matrix

equations stated in part (i) of the theorem of Section 2.3.

I
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When the restriction imposed on the parameter that it reside in

SIthis hyperellipsoid is lifted, Basar and Mintz 121 showed that the minimax

estimate, over linear and nonlinear rules, is a linear estimate and the least

J favorable prior distribution is a zero-mean normal distribution. A closely

related problem solved by Mintz [3] in which the loss function is the
I

standard quadratic loss function and the parameter space is a hyper-

ellipsoidal subset of En exhibits a similar structure in the least favorable

prior distribution to the problem treated here, with the difference that in

Jtbat case the support of the discrete prior distribution lies always on the

bou.tndary of the parameter space. The class of decision rules considered in

-I [31 is also restricted to linear rules.

2.6. A Generalized Model

We consider now a more general observation model. Let z x+0 +v,

I xr, x and v are independent zero mean Gaussian random vectors with positive

d,.fIT),t- covarianc,. matrices Q and F respectively. The.. results obtzinei in

j S- ticn 2.3 car, b'7 c•xtznded to find a linear minimax estimate for u 'x+8

'Irider a grneralized quadratic loss function given by

L[_(z),u] = (6-u)'c(6-u) -e'DIe.

.- The 'jnnown parameter e is an element of 02 = E O'D2 e < e , e > 0,

1The fcllcl0Ing thlorem provides tle desired minimax c.--timate.

l ~D,•fine

F(A,a) (A ++ -- 7D7. (2.6.1)

-. q=)~~(+1C D

I
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Let A* and a'k denote any solution to

I F(A*,=*)A* 0 (2.6.2)

r P(A*,a*) <_ 0 (2.6.3)

T• 2

Tr(D2 A*) < e (2.6.4)

where
I A* > 0 and > 0. (2.6.5)

S I With this definition and notation we conclude that:

(i) There exists a pair A* and * satisfying (2.6.2) through

J (2.6.5), and either
e2 2

* =0 and Tr"D2A*] e < e

or2 2r* > 0 and Tr[D2 A*] e, e2 •

(ii) The decision rule 6" given by

6*(z) (A*+Q)(A* +Q+E)' z (2.6.6)

Ls a linear minimax estimate for u. The details of the proof are omitted

ýcre since it is essentially the same as the proof of Theorem I of Section

2.3.

A further extension of the work presented in this thesis can be

use-d to determine a linear minimax terminal state estimate for a linear

plant subject to an energy constraint with a generalized quadratic loss

function as the underlying loss function.
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